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Abstract: In this paper we solve a complex discrete-continuous model of tumour-induced angiogenesis using an explicit 

time-stepping FDM and simultaneously simulate the model dynamics in 3D. The interoperability between the CUDA 

programming model and the graphics hardware through OpenGL allows us to generate dynamic interactive 3D realistic 

visualisations. We use CUDA for the complex parallel calculations and deploy OpenGL for on-the-fly 3D visualisation of the 

numerical simulations. Clearly, being able to link the numerical results of complex mathematical models to interactive 3D 

visualisations that can literally update instantaneously to varying model parameters, should provide an invaluable tool for clinical 

physicians and research scientists. We also give an overview of current medical imaging techniques for studying 

microcirculatory and blood flow dynamics at the cellular level and indicate how the results presented here could offer potential 

for future developments in this area. 
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1. Introduction 

Over the last decade, high-performance computing has 

evolved dramatically, in particular because of the accessibility 

to graphics processing units (GPUs) and the emergence of 

GPU-CPU heterogeneous architectures, which have led to a 

huge shift in the available medical applications for 

supercomputing and parallel programming. Such in silico 

experiments focussed on the dynamics of tumour growth and 

other related biological phenomenon have become readily 

accepted by the scientific community both as a means to direct 

new research and a route to generate new hypotheses and 

testable predictions [1-5]. Once we have a model that is 

validated it is possible to more efficiently predict what should 

be happening in a particular experiment. With such a 

predictive model it is much easier and faster to perform in 

silico experiments to test hypotheses and predictions than 

running time consuming and costly laboratory experiments. 

More recently, the advantages of supercomputing and parallel 

processing techniques has highlighted the speedup, amongst 

other benefits, from the numerical solution of complex 

mathematical models of tumour dynamics [6-10]. In a 

previous paper, the authors developed a 3D parallel algorithm 

based on a time-stepping finite difference method (FDM) to 

solve a hybrid continuous-discrete model of tumour-induced 

angiogenesis [10]. The numerical solution was implemented 

on the GPU and results indicated an impressive increase in 

execution time over that of a conventional C++ algorithm. 

Whilst also highlighting the many optimisation techniques 

available to further improve the performance of the algorithm. 

In this paper, the authors develop the algorithm further and 

utilise the graphical interoperability available on parallel 

platforms to visualise the angiogenetic process in 3D. It is 

envisaged that being able to link the numerical results of 

complex biological models to an interactive 3D visualisation 

that can literally update instantaneously to varying model 

parameters, should be an invaluable tool for clinical 

physicians and research scientists. Moreover, such rapid and 

interactive virtual experimental representations can also 

facilitate oncological research and pharmaceuticals in 

developing and testing new anti-cancer treatment strategies. 

In order to progress from the relatively harmless avascular 

phase to the potentially lethal vascular state, solid tumours 

must induce the growth of new blood vessels from existing 

ones, a process known as angiogenesis. The morphological 
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events that are involved in angiogenesis have been highlighted 

through studies both involving in vivo and in vitro 

angiogenetic assays [11]. Physiological angiogenesis is a 

highly organised sequence of cellular events comprising 

vascular initiation, formation, maturation, remodelling and 

regression, which are controlled and modulated to meet tissue 

requirements. In contrast, pathological angiogenesis is less 

well controlled and although the initiation and formation 

stages occur, the vessels rarely mature, remodel or regress in 

disease. Whilst early models of angiogenesis were focused on 

accurately replicating key observed behaviours during this 

process, more recent models have been able to test specific 

hypotheses and suggest useful strategies for anti-angiogenic 

drug development. It has been known for some time that a 

series of biologic on and off switches regulate the process of 

angiogenesis providing a tumour with the ability to trigger the 

formation of its own vascular network by the secretion of 

chemical factors [12]. The main on switches are known as 

angiogenesis-stimulating growth factors and off switches as 

angiogenesis inhibitors. In order to monitor and supply 

sufficient amounts of essential nutrients to the surrounding 

tissues, blood vessels also have hypoxia-induced sensors, or 

receptors that assist in vessel remodelling to adjust the blood 

flow accordingly. From these vascular networks, blood vessels 

provide essential nutrients and oxygen throughout the body. 

Indeed, a key mechanism of anti-angiogenic therapy is to 

interfere with the process of blood vessel growth and literally 

starve the tumour of its blood supply. Recently, a new class of 

cancer treatments that block angiogenesis have recently been 

approved and available to treat cancers of the colon, kidney, 

lung, breast, liver, brain, ovaries and thyroid [13-17]. 

Angiogenesis can be considered a complex biological 

phenomena and one that at a system level is dynamic, spatially 

heterogeneous, frequently non-linear, and spans many orders 

of magnitude, both spatially and temporally. Mathematical 

and computational models of vascular formation have 

generated a basic understanding of the processes of capillary 

assembly and morphogenesis during tumour development and 

growth [18, 19]. However, by the time a tumour has grown to a 

size whereby it can be detected by clinical means, there is a 

strong likelihood that it has already reached the vascular 

growth phase and developed its own blood circulatory 

network. For this reason, a thorough understanding of the 

behavioural processes of angiogenesis is essential. Indeed, the 

development of realistic mathematical and computational 

models of such processes is a powerful method of testing 

hypotheses, confirming biological experiments, and 

simulating complex dynamics. Moreover, the ability to 

realistically create virtual 3D visualisations of dynamic 

biological processes provides further support to quantitative 

analyses. Several other authors have already attempted to 

model the process of angiogenesis using 3D visualisation 

techniques [20-22] but to our knowledge have yet to take 

advantage of the benefits of using high performance 

computing. 

Pathological angiogenesis has been extensively explored 

through mathematical modelling over the past few decades, 

specifically in the contexts of tumour-induced angiogenesis 

and subsequent vascularisation. More recently, hybrid models 

that integrate both continuous and discrete processes of 

biological phenomena on various temporal and spatial scales 

have come to the fore [23]. These models represent cells as 

individual discrete entities and often use continuous nutrient 

concentrations to model cellular behaviour due their 

microenvironment. The model presented in this paper is of a 

hybrid type in which a system of couple nonlinear partial 

differential equations (PDEs) describe the continuous 

chemical and macromolecular dynamics and a discrete 

cellular automata-like model controls cell migration and 

interaction of neighbouring cells. Mathematically, FDM are 

the first port of call for solving complex biological 

phenomenon described by nonlinear PDEs. However, they 

require intensive computational resources which generally 

leads to significant and time-consuming expense. The 

advantages of explicit time-stepping in FDM over many other 

types of solutions is that they lend themselves well to 

exploitation in a completely data-parallel context. In such 

cases, GPUs can be used to greatly accelerate numerical 

simulations and offer an extremely valuable advanced 

computational technique for tackling such problems. The 

compute unified device architecture (CUDA) programming 

model is especially well-suited to address problems that can 

be expressed as data-parallel computations [24]. Moreover, 

the interoperability between the CUDA programming model 

and the graphics hardware through OpenGL allows us to 

simulate more dynamic and interactive 3D realistic 

visualisations. We can use CUDA for the complex parallel 

calculation and deploy OpenGL for 3D on-the-fly 

visualisations of the numerical results on-screen. In this paper 

we solve a complex discrete-continuous model of 

tumour-induced angiogenesis using an explicit time-stepping 

FDM whilst dynamically visualising the growth of a 3D 

vascular network driven by tumour-induced angiogenesis. 

2. Biological Description 

Solid tumours generally undergo a period of avascular 

growth, after which they become dormant for a sustained 

period without access to a sufficient supply of essential 

nutrients, such as oxygen and glucose. Beyond a certain size 

(~2 mm) diffusion alone is insufficient for the provision of 

such nutrients; the surface area to volume ratio is too low and 

as such the developing tumour begins to starve. In response to 

this state of hypoxia, cancer cells send out signals to cells of 

nearby blood vessels by secreting a number of chemicals, 

known collectively as tumour angiogenic factors (TAF) 

[25-27]. Tumour angiogenesis stimulators include chemicals 

that belong to fibroblast growth factor (FGF) and vascular 

endothelial growth factor (VEGF) families. One important 

function of FGF is the promotion of endothelial cell 

proliferation and the physical organisation of endothelial cells 

into tube-like structures. Also, some anti-angiogenic drugs 

block VEGF from attaching to the receptors on the endothelial 

cells that line the blood vessels in order to stop them from 
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growing. In fact, no metabolically active tissue in the body is 

more than a few hundred micrometres from a blood capillary. 

Once secreted, TAF diffuse into the surrounding tissue and 

set up an initial steady-state concentration gradient between 

the tumour and any pre-existing vasculature. Endothelial cells 

situated in nearby parent vessels degrade their own basal 

lamina and begin migrating into the extra cellular matrix 

(ECM) [28, 29]. The ECM is a complex mixture of 

macro-molecules, containing collagens, fibronectin etc., 

which functions as a scaffold for endothelial cells to grow on. 

The degradation of the basal lamina leads to damage, and 

potential rupture, of the parent vessel basement membrane. 

Such damage allows fibronectin from the blood to leak from 

the parent vessel and diffuse into the surrounding tissue 

[30-32]. Small capillary sprouts form from several endothelial 

cell clusters and begin to extend towards the tumour, directed 

by the motion of the leading endothelial cell at the sprout tip, 

until the finger-like capillaries reach a certain length. At this 

point, they tend towards each other, and form loops before 

fusing together in a process known as anastomoses [25, 26]. 

Following anastomoses, the primary loops start to bud and 

sprout repeating the process and further extending the newly 

formed capillary bed. Figure 1 shows diagrammatically the 

general shape of the capillary sprouts and their finger-like 

structure. 

 

Figure 1. The general shape of capillary sprouts and their finger-like 

structure. 

Further sprout extension occurs when some of the 

endothelial cells on the sprout-wall begin to proliferate. Cell 

division is largely confined to a region just behind the cluster 

of endothelial cells that constitute the sprout-tip. This process 

of sprout-tip migration and proliferation of sprout wall cells 

forms solid strands of endothelial cells within the ECM. As 

the sprouts approach the tumour, branching rapidly increases 

and produces a brush border effect, until the tumour is finally 

penetrated [29]. Once a supply of essential nutrients reaches 

the tumour, through this newly formed blood circulatory 

system, it enters the phase of vascularisation as shown in 

Figures 2 and 3. To support continued growth, the vascular 

system constantly restructures itself implying that 

angiogenesis is an on-going process, continuing indefinitely 

until the tumour is removed or destroyed. Indeed, 

angiogenesis also enables the tumour to spread to other parts 

of the body through the blood stream significantly increasing 

the probability of mortality from cancer due to metastasis. 

 

Figure 2. A tumour being surrounded by a vascular network of blood vessels. 

 

Figure 3. A tumour reaching the vascular phase as a result of angiogenesis. 

Indeed, angiogenesis is an essential component of the 

metastatic pathway. The new blood vessels that are formed 

allow the cancer cells to leave the original site of the cancer 

and spread to distant organs through the blood. Moreover, the 

higher the density of new blood vessels within a tumour, the 

higher the risk of metastasis. 

3. A Continuous-Discrete Model of 

Tumour-Induced Angiogenesis 

3.1. The Continuous Model 

For a more rigorous mathematical proof, readers are 

directed to [9, 33] and references therein. Here we simply 

summarise the main mathematical development so as to focus 

on the main issues of the paper. If we denote the endothelial 

cell density by n, the TAF and fibronectin concentration by c 

and f, respectively the complete system of scaled coupled 
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nonlinear PDEs describing tumour-induced angiogenesis can 

be written as: 
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The chemotactic migration is characterised by the function 
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� reflects the fact that chemotactic sensitivity generally 

decreases with increased TAF concentration. A description of 

each of the parameters, and their respective values, are shown 

in Table 1. 

Table 1. Parameter descriptions and values used in the coupled nonlinear 

PDE model (1) – (4) [33]. 

Parameter Description 

α Decay factor 

β Fibronectin production coefficient 

γ Fibronectin degradation 

D Random motility diffusion coefficient 

η Rates of TAF uptake 

ρ Hapotactic coefficient 

χ Chemotactic coefficient 

Our system is assumed to hold on a 3D spatial domain Ω 

(i.e. a volume of tissue) with appropriate initial conditions; c(x, 

y, z, 0), f(x, y, z, 0) and n(x, y, z, 0).The tumour cells are 

assumed to be confined within a domain Ω ∈ �0,1 !in which 

no-flux (Neumann) boundary conditions "Ω, are imposed on 

the boundaries of Ω. After the TAF has reached the parent 

vessel, the endothelial cells within the vessel develop into 

several cell clusters which eventually form sprouts [33]. For 

simplicity, we assume that initially five clusters develop along 

the x-axis at y ≈ 1, with a circular tumour located at y = 0 and 

the parent vessel of the endothelial cells at y = 1 as shown in 

Figure 4. 

 
Figure 4. A schematic representation of the positions of the parent vessel and 

circular tumour as well examples of branching at a sprout tip and looping of 

two capillary sprouts. 

3.2. The Discrete Model 

The technique of tracing the path of an individual 

endothelial cell at a sprout tip was first proposed by Anderson 

et al. [34]. The method involves using standard FDM to 

discretise the continuous model described in (1)-(4) over a 3D 

uniform grid. Then, the resulting coefficients of the finite 

difference seven-point stencil are used to generate the 

probabilities of movement of an individual endothelial cell in 

response to its local microenvironment. 3D stencil 

computations are those in which each node in a 3D grid is 

updated with a weighted average of the six neighbouring node 

values. Two schematic diagrams of a 3D finite difference 

seven-point stencil are shown in Figure 5. 

 
Figure 5 Schematic diagrams of the finite difference 7-point 3D stencil. 
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We first discretise the continuous model by approximating 

the 3D domain Ω ∈ �0,1 ! on a uniform grid of node length, 

width and depth h, and time t by increments of size k. By 

applying a forward finite difference scheme, the fully-explicit 

discretised version of the continuous model can be obtained. 

The discretisation for n, f and c are shown below: 
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Where i, j k, and q are positive parameters which specify the 

location on the grid and the time step, i.e., 2 = 3∆2, 5 =
6∆5, 7 = 0∆7,  and 8 = 0∆8 . P0–P6 are functions of both 

fibronectin and TAF concentrations at nearby neighbouring 

points of an individual endothelial cell. The complete set of 

parameter values used for the numerical simulation and the 

exact forms of P0–P6 can be found in [9, 20, 33]. The 

coefficients P0–P6 can be thought of as being proportional to 

the probabilities of endothelial movement. That is, the 

coefficient P0, is proportional to the probability of no 

movement, and the coefficients P1, P2, P3, P4, P5, and P6, are 

proportional to the probabilities of moving left, right, up and 

down, out of and into the plane, respectively. Each numerical 

simulation is based on an increased size of array width i.e. a 

finer grained uniform 3D grid. We use a constant iteration size 

of 1,000 time steps to allow for an adequate convergence of 

the numerical solution. At each time step, the numerical 

simulation involves solving the discrete model to generate the 

seven coefficients P0–P6. Based on the values of these 

coefficients, a set of seven probability ranges are determined 

based on the following criteria: 

9) = 0 to  ()                      (8) 

9< = ∑  (�
<+�
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<
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Where m = 1…6. A uniform random number is then 

generated on the interval [0, 1], and, depending on the range 

into which this value falls, the current individual endothelial 

cell will remain stationary (Ro), move left (R1), right (R2), 

move up (R3), down (R4), out of (R5), or into the plane (R6). 

Each endothelial cell is therefore restricted to move to one of 

its six orthogonal neighbouring grid nodes or remain 

stationary at each time step. We further assume that the motion 

of an individual endothelial cell located at the tip of a capillary 

sprout governs the motion of the whole sprout. This is not 

considered unreasonable since the remaining endothelial cells 

lining the sprout-wall are contiguous [35]. We further assume 

that each sprout tip has a probability, Pb of generating a new 

sprout (branching) and that this probability is dependent on 

the local TAF concentration. It is also reasonable to assume 

that the newly formed sprouts do not branch until there is a 

sufficient number of endothelial cells near their tip. We will 

assume that the density of endothelial cells required for 

branching is inversely proportional to the concentration of 

TAF, since new sprouts become much shorter as the tumour is 

approached [35]. Based on these assumption we can write 

down the following three cellular rules: 

Rule 1: New sprouts reach maturation after a length of time 

(ψ = 0.5) [33] before branching, 

Rule 2: Sufficient local space exists for a new sprout to 

form, and 

Rule 3: Endothelial cell density, n > nb, where nb ∝
�

�@,A
. 

We also assume that if a sprout tip encounters another 

sprout, then anastomosis can occur and a loop is formed. As a 

result of a tip-to-tip anastomosis, only one of the original 

sprouts continues to grow (purely random) and the other fuses 

to form the loop [25]. Figure 4 shows a schematic of the 

branching at a sprout tip and looping of two capillary sprouts. 

In addition, endothelial cell doubling time was estimated at 18 

hours [36] and this is factored into our discrete model such 

that cell division occurs behind a sprout tip every 18 hours. We 

assume that this has the effect of increasing the length of a 

sprout approximately one cell length every 18 hours. Due to 

the inherent randomness of the discreet model, proliferation 

will occur asynchronously, as observed experimentally [25]. 

4. Implementation 

4.1. Hardware 

The CUDA C++ program was developed in Microsoft
® 

Visual Studio 2012 using CUDA version 7.0 and tested on an 

Nvidia GeForce
®
 GTX

TM
 780 GPU based on the Kepler 

GK110 architecture with Compute Capability 3.5. The 

Compute Capability describes the features of the hardware 

and reflects the set of instructions supported by the device as 

well as other specifications, such as the maximum number of 

threads per block and the number of registers per 

multiprocessor. Moreover, hardware design, number of cores, 

cache size, and supported arithmetic instructions are different 

for different versions of Compute Capability. Higher compute 

capability versions are supersets of lower (i.e., earlier) 

versions, so they are backward compatible. The graphics 

engine was developed using interoperability between the 

CUDA programming model and OpenGL 3.x instructions. 

The operating system was Windows 8.1. 

4.2. The CUDA Programming Model 

The CUDA programming model provides an application 

program interface (API) that exposes the underlying GPU 

architecture; a collection of single instruction, multiple data 

(SIMD) processors capable of executing thousands of threads 

in parallel. A version of SIMD used by GPUs is the single 

instruction, multiple threads (SIMT) architecture in which 

multiple threads execute an instruction sequence. In CUDA C, 

an instruction sequence is written into a specific function 

known as a kernel that can be executed on a device N times in 

parallel by N different CUDA threads, asynchronously. Unlike 
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a C function call, all CUDA kernel launches are asynchronous 

so that control returns to the CPU immediately after the 

CUDA kernel is invoked [24, 37]. 

4.3. CUDA and OpenGL Interoperability 

OpenGL is one of the most common programming 

interfaces used for 2D and 3D visualisation of scientific 

results and data. OpenGL is platform independent and the 

most widely supported, and best documented 2D and 3D 

graphics API available. To get started with OpenGL and 

CUDA operability we need to initialise the OpenGL driver by 

calling the standard GL utility toolkit (GLUT) setup functions. 

A typical OpenGL initialisation procedure is shown in Code 

Listing 1. Note that it is necessary to create a valid OpenGL 

rendering context and call glewInit() to initialise the extension 

entry points. If glewInit() returns GLEW_OK, the 

initialisation succeeded and it is then possible to use available 

extensions as well as core OpenGL functionality. 

 

 

After the OpenGL initialisation, we can proceed to select a 

CUDA device on which to run our application. On many 

systems, this is not a complicated process, since they will 

often contain only a single CUDA-enabled GPU. However, an 

increasing number of systems contain more than one 

CUDA-enabled GPU, so we implement a method to choose 

one as shown in Code Listing 2. 

Essentially, this code tells the runtime to select any GPU 

that has a compute capability of version 1.0 or better. It 

accomplishes this by first creating and clearing a 

cudaDeviceProp structure and then by setting its major 

version to 1 and minor version to 0. It passes this information 

to cudaChooseDevice(), which instructs the runtime to select a 

GPU in the system that satisfies the constraints specified by 

the cudaDeviceProp structure. 

We need to know the CUDA device ID so that we can tell 

the CUDA runtime that we intend to use the device for CUDA 

and OpenGL interoperability. We achieve this with a call to 

cudaGLSetGLDevice(), passing the device ID dev we 

obtained from cudaChooseDevice()[24, 37]. 

The OpenGL and CUDA APIs share data through a 

commonly-accessible memory in the framebuffer through 

which OpenGL stores data in abstract buffers known as buffer 

objects. The actual CUDA and OpenGL interoperability 

occurs when a CUDA kernel maps a buffer into a CUDA 

memory space. A resource must be registered to CUDA before 

it can be mapped using the functions in OpenGL. These 

functions return a pointer to a CUDA graphics resource of the 

form cudaGraphicsResource. Registering a resource is 

potentially high-overhead and therefore typically called only 

once per resource. A CUDA graphics resource is unregistered 

using cudaGraphicsUnregisterResource(). Once a resource is 

registered to CUDA, it can be mapped and unmapped as many 

times as necessary using cudaGraphicsMapResources() and 

cudaGraphicsUnmapResources(). 

cudaGraphicsResourceSetMapFlags() can be called to specify 

usage hints (write-only, read-only) that the CUDA driver can 

use to optimise resource management. A mapped resource can 

be read from or written to by kernels using the device memory 

address returned by 

cudaGraphicsResourceGetMappedPointer() for buffers and 

cudaGraphicsSubResourceGetMappedArray() for CUDA 

arrays. There are two main OpenGL memory objects that 

CUDA manipulates; namely: 

1. Pixel buffer objects (PBO) – a region of memory used by 

OpenGL to store pixels. 

2. Vertex buffer objects (VBO) – a region of memory used 

by OpenGL for 3D vertices. 

To pass data between OpenGL and CUDA, we must first 

create a buffer that can be used with both OpenGL and CUDA 

APIs. We declare two global variables that will store handles 

to the data we intend to share between OpenGL and CUDA. 

We need two separate variables because OpenGL and CUDA 

will both have different names for the same buffer [24, 37]. 

Code Listing 3 shows how we typically generate, bind, 

register and subsequently delete a vertex buffer object (VBO) 

between OpenGL and CUDA. 
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glGenBuffers() generate the relevant buffer object names, in 

this case one buffer object named vbo. No buffer objects are 

associated with the returned buffer object names until they are 

first bound by calling glBindBuffer(). glBufferData() creates a 

new data store for the buffer object currently bound to 

GL_ARRAY_BUFFER. The new data store is created with 

the specified size in bytes and usage i.e., 

GL_DYNAMIC_DRAW. Effectively, the call to 

glBufferData() requests the OpenGL driver to allocate a buffer 

large enough to hold the required amount of data. In 

subsequent OpenGL calls, we can now refer to this buffer with 

the handle vbo, while in CUDA runtime calls, we refer to this 

buffer with the pointer resource. In its initial state, the new 

data store is not mapped, it has a NULL mapped pointer, and 

its mapped access is GL_READ_WRITE. 

cudaGraphicsGLRegisterBuffer() registers the buffer object 

specified by the buffer for access by CUDA. 

cudaGraphicsRegisterFlagsNone specifies no hints about how 

the resource will be used except that it will be read from and 

written to by CUDA. Since we would like to read from and 

write to this buffer from our CUDA C kernels, we will need 

more than just a handle to the object but an actual address in 

device memory that can be passed to our kernel. We achieve 

this by instructing the CUDA runtime to map the shared 

resource and then by requesting a pointer dptr to the mapped 

resource. A typical implementation of mapping and 

unmapping resources is shown in Code Listing 4. 

 

cudaGraphicsResourceGetMappedPointer() returns in dptr 

a pointer through which the mapped graphics resource 

resource may be accessed. We can now use dptr as we would 

use any device pointer, except that the data can also be used by 

OpenGL as, for example a pixel source. As we can see in Code 

Listing 4, an execution configuration defines both the number 

of threads that will run the kernel plus their arrangement in a 

1D, 2D, or 3D computational grid [24, 37]. In its simplest 

form, the kernel is defined using the following CUDA C 

syntax: 

__global__ kernel<<<grid, block>>>(); 

Threads are grouped into blocks and blocks are grouped 

into grids as shown schematically in Figure 6. There is a limit 

to the number of threads per block, for the Kepler GK110 

architecture a thread block may contain up to 1,024 threads. 

On the GPU, each multiprocessor is responsible for handling 

one or more blocks in a grid which is further divided into a 

number of streaming processors each handling one or more 

threads in a block. 

 

Figure 6. A schematic representation of threads, blocks and grids. 

A block is 1D, 2D, or 3D with the maximum size of the x, y, 

and z dimensions being 1,024, 1,024, and 64, respectively, 

such that 2 × 5 × 7 ≤ 1,024 i.e., the maximum number of 

threads per block. Blocks are subsequently organised into a 

1D, 2D or 3D grid with the maximum size of the x, y, and z 

dimensions being 2
31

-1, 65,535, and 65,535, respectively. An 

example schematic of a block and grid set up is shown in 

Figure 7. There are also a maximum of 65,536 registers 
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available per block. 

 

Figure 7. An example CUDA thread grid and block. 

Threads are organised in a two-level hierarchy. At the top, a 

grid is organised into a 2D array of blocks. The number of 

blocks in each dimension is specified by the first parameter 

given in the kernel launch grid. At the bottom level, all blocks 

of a grid are organised into a 3D array of threads. The number 

of threads in each dimension of a block is specified by the 

second parameter given in the kernel launch block. Each 

parameter is a dim3 CUDA C data type, which is essentially a 

struct with three fields’. x,. y, and. z all initialised to 1. Since 

grids are only a 2D array of block dimensions, the third field is 

often ignored; but still initialised to one. 

As shown in Code Listing 4, we must unmap our shared 

resource using cudaGraphicsUnmapResources(). This call is 

important to make prior to performing any rendering since it 

provides synchronisation between the CUDA and graphics 

portions of the application. Specifically, it implies that all 

CUDA operations performed prior to the call to 

cudaGraphicsUnmapResources() will complete before 

ensuing graphics calls begin. Algorithm 1 shows the CUDA 

update kernel for the time-stepping finite difference solution 

to our hybrid continuous-discrete model. 

 

Finally, we render each result to the screen from the 

repeated calls to the update kernel as shown in Code Listing 5. 

 

glVertexPointer() specifies the location and data format of an 

array of vertex coordinates to use when rendering. To enable 

and disable the vertex array, we call glEnableClientState() and 

glDisableClientState() with the argument 

GL_VERTEX_ARRAY. If enabled, the vertex array is used 

when glDrawArrays() is called which can specify multiple 

geometric primitives. Instead of calling an OpenGL procedure 

to pass each individual vertex, texture coordinate, edge flag, or 

colour, it is possible to prespecify separate arrays of vertices 

and colours and use them to construct a sequence of primitives 

with a single call to glDrawArrays(). When glDrawArrays() is 

called, it uses a count of sequential elements from each 

enabled array to construct a sequence of geometric primitives. 

glutSwapBuffers() performs a buffer swap on the layer in use 

for the current window. Specifically, glutSwapBuffers() 

promotes the contents of the back buffer of the layer in use of 

the current window to become the contents of the front buffer. 

The update typically takes place during the vertical retrace of 

the monitor, rather than immediately after glutSwapBuffers() 

is called. 

5. Results and Discussion 

 
Figure 8. 3D visualisation of tumour-induced angiogenesis initiated from two 

different initial randomly generated sprout tips based on our hybrid 

discrete-continuous model. 

Figure 8 shows two 3D visualisations of tumour-induced 

angiogenesis initiated from two different initial randomly 

generated sprout tips based on the hybrid discreet-continuous 

model discussed above. Notice the occurrences of anastomoses 

has the developing sprout tips merge and loop into one another. 

The brush border effect is also evident has the capillary sprouts 

get closer to the tumour. Our results show that the hybrid 
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discrete-continuous representation of tumour-induced 

angiogenesis is indeed a valid model of the process. The 3D 

visualisations are not only rapid but can be animated and 

dynamically altered during each run of the application. 

Textures, a feature from the graphics world, are images that 

are stretched, rotated and pasted onto polygons to form 3D 

graphics. Textures enable fast random access to arrays and use 

a cache to provide bandwidth aggregation. Moreover, Kepler 

GPUs and CUDA 5.0+ introduce a new feature called texture 

objects that greatly improves their potential. Texture objects 

use the new cudaTextureObject_t class API, whereby textures 

become first-class C++ objects and can be passed as 

arguments just as if they were pointers. There is no need to 

know at compile time which textures will be used at runtime, 

this enables much more dynamic execution and flexible 

programming. Figure 9 shows two examples of applying 

different levels of filtering to each texture based on the new 

texture object API. The images show that we can uncover 

more features by controlling the granularity and contrast of the 

textures. Indeed, implementing more complex mathematical 

models that take into, for example blood flow dynamics could 

make it possible to use such techniques for accelerated 3D 

image processing, visualisation and dynamic interaction. 

 

Figure 9. The effects of applying a high (A and C) and low (B and D) level of 

filtering using texture objects. 

6. Medical Imaging Techniques 

Examination of any photomicrograph relating to 

vascularisation immediately demonstrates why the modelling 

of fluid flow through a vascular network is such a challenging 

task. Fluid mechanical issues notwithstanding, the underlying 

network topology is itself rather complex, consisting of 

tortuous interconnected blood vessels embedded within a host 

tissue. Significant gaps remain in our understanding of the 

mechanisms that determine the spatial organisation of 

angiogenic growth and the topology of the resulting vascular 

network. Advances medical imagining technology for 

studying microcirculatory and blood flow dynamics at the 

cellular level will hopefully help close this gap. 

6.1. Laser Speckle Imaging 

When an object is illuminated by laser light, the 

backscattered light will form a random interference pattern 

consisting of dark and bright areas known as a speckle pattern. 

If the illuminated object is static, the speckle pattern is 

stationary. When there is movement in the object, such as red 

blood cells in a tissue, the speckle pattern will change over 

time. Such changes will be usually be recorded with a type of 

charge-coupled device (CCD) camera. Depending on the 

degree of movement in the imaged area, the level of blurring 

will differ; the more movement there is in an image, the more 

blurred it will appear. The level of blurring is quantified by the 

speckle contrast which has been found to correlate with blood 

flow. Figure 10 shows several images produced using laser 

speckle imaging (LSI); a standard lamp illumination (A) 

where the level of blood flow in each vessel is unknown, a raw 

speckle image (B) when laser excited shows a grainy blurred 

image from light collected by moving blood cells. By applying 

a convolution filter it is possible to obtain a high definition 

speckle contrast image (C). Finally, by making several 

assumptions on the velocity of blood flow, a speckle flow 

index map (D) can be produced. 

 

Figure 10. Laser speckle imaging. A. Reflectance image B. Raw speckle 

image C. Speckle contrast image D. Speckle flow index map. 

LSI is routinely used to measure blood flow as well as being 

prominent in clinical research to study the microvascular 

response of a patient to therapeutic treatments and strategies, 

in both pre-clinical and clinical trials. 
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6.2. Laser Doppler Imaging 

In contrast to LSI, laser Doppler imaging (LDI), the 

temporal intensity fluctuations of each speckle (or a collection 

of speckles) is monitored at high sampling frequencies 

(~MHz). In this case, an increase in fluctuation frequency is 

associated with faster blood flow. The main functions of the 

microcirculation are the transport of blood cells and chemicals, 

such as nutrients and oxygen to tissues, aid in blood pressure 

regulation and to act as a thermo-regulator. However, the 

microcirculation can show extreme dynamics. Under normal 

conditions, the blood perfusion can differ several 1000% 

between a cold and warm fingertip, for example. It also 

exhibits large spatial variations and may vary up to 100% in 

forearm skin if the measurement site is moved by as much as 1 

mm. Blood perfusion measurements using laser Doppler 

techniques can capture these extreme dynamics and large 

spatial variations as shown in Figure 11. 

 
Figure 11. Laser Doppler imaging. A. Intensity image B. Perfusion map C. 

Concentration map D. Speed map. 

6.2. Intravital Microscopy 

Complete surgical resection of the primary tumour is still 

one of the most efficient cures for cancer. Unfortunately, 

cancer can progress to a stage at which tumour cells leave the 

primary tumour and spread to distant tissues and organs to 

form secondary tumours, a process known as metastasis. 

Complications caused by metastases are the major cause of 

cancer-related death, and this process is far from being fully 

understood. Although histological techniques have provided 

important information on metastasis, they give only a static 

image and therefore lack a detailed interpretation of this 

highly complex and dynamic process. New advances in 

intravital microscopy (IVM), such as two-photon microscopy, 

imaging chambers, and fluorescent resonance energy transfer 

techniques, have recently been used to visualise the behaviour 

of single metastasising cells at subcellular resolution over 

several days, yielding new and unexpected insights [38]. 

Tumour cells have to acquire certain traits that allow them 

to escape from the primary tumour site and home in on and 

colonise a secondary site. These gained properties, such as 

survival, invasiveness and motility, allow tumour cells to 

move into the surrounding tissue, where they enter blood or 

lymph vessels. Once in circulation, tumour cells are 

transported to a secondary site, where they can grow to form 

metastatic foci or become dormant. To investigate these 

dynamic processes underlying metastasis, most studies rely on 

techniques that are only able to provide a static view, visual 

inspection of tumour size and end-stage measurements (e.g., 

the number of metastatic foci). In addition, these techniques 

analyse large numbers of cells, which obscures the signalling 

properties and activities of individual cells. This results in loss 

of crucial information concerning the adaptive properties of 

the offending tumour cells that spread and form metastases. 

Recent advances in IVM techniques have made it possible to 

visualise the metastatic process at a subcellular resolution in 

real time in vivo. Moreover, a number of new IVM techniques 

have become available with different properties in relation to 

imaging depth, resolution, timescale and applications [39-41]. 

 

Figure 12. An example image taken using intravital microscopy. Tumour cells 

(white spots) are present in a vessel that collects blood from a C26 colorectal 

tumour (scale 10m). 

As shown in Figure 12, to metastasise, tumour cells (white 

spots) have to escape from the primary tumour and colonise a 

distant site. During this process, cells develop traits, such as 

invasiveness, motility, attachment, chemo sensing, that allow 

them to detach from the primary tumour, invade the interstitial 

matrix, overcome the barrier of the basement membrane, enter 

the blood vessel, be transported to a distant site, exit the blood 

vessel and finally grow to form metastatic foci. So far, most of 

the advances have resulted in the ability to image the earlier 

steps of metastasis, including migration, invasion and 

intravasation. Only a small number of studies have attempted 

to image cells in organs that are prone to metastasis, such as 

the lungs, bone marrow, lymph nodes and spleen. 

Unfortunately, these experiments rely on surgical dissection to 

expose the imaging site, which hampers long-term imaging 

and therefore the visualisation of colonisation and dormancy. 

Indeed, the next generation of imaging chambers are aiming to 
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visualise the spleen, liver and lymph nodes. Although IVM 

has been successful in providing new insights into the early 

stages of metastasis, most studies are only observational. In 

future developments, it will be important to move the field 

from observational IVM to experiments that can also 

characterise the underlying molecular processes. For example, 

new cancer models should be imaged that have been 

engineered to manipulate the behaviour of cancer cells by 

inducible expression of oncogenes or signalling proteins [42]. 

6.4. Computerised Tomographic Angiography 

Angiography is an imaging technique used to visualise the 

inside, or lumen, of blood vessels and organs of the body. 

Computerised tomographic (CT) angiography is a method of 

combining the technology of a conventional CT scan with that 

of traditional angiography to create detailed images of the 

blood vessels in the body. In a CT scan, x rays and computers 

create images that show cross-sections, or slices, of the body. 

Angiography involves the injection of contrast dye into a large 

blood vessel, usually in your leg, to help visualize the blood 

vessels and the blood flow within them (see Figure 13). 

 
Figure 13. An example image of the abdomen taken using CT angiography. 

An entire anatomic region can be scanned while the 

intravenous contrast is in the arteries and before it passes into 

the veins. Along with improved scanner speed, the ability to 

create thin-section images, around 1 mm or less, has become 

practical. This combination has allowed for the creation of 

multiplanar images to depict anatomy and pathologic 

conditions without the previous limitation of only being able 

to view the images in the axial plane. Nowadays, conventional 

diagnostic angiography is being replaced by CT angiography 

to evaluate the aorta, major vessels of the abdomen and pelvis, 

and the arteries of the thighs and legs. The resultant image 

volumes can be viewed in any plane and in several ways, 

including maximum intensity projection, shaded surface 

display, and volume rendering. 

From our perspective, the above medical imaging 

techniques provide us with food for thought in which to 

develop our research when considering graphics 

interoperability for 3D visual representations using high 

performance computing. Indeed, future work will involve a 

study of the blood flow within the vasculature surrounding the 

tumours whilst also investigating enhanced methods to 

visualise the supply of targets to a tumour through the blood 

vessel superhighway. By developing more complex 

mathematical models with built in hemodynamics, such as 

blood pressure, viscosity, flow rates and other mechanical 

stress factors, we can further understand angiogenesis has a 

mechanism for targeting cancer directly. Moreover, being able 

to interact with such models in real time will allows us to 

experiment with parameters and dynamically change the 

topology and investigate other strategies for targeted therapy. 

For example, we could investigate the effects of capillary 

pruning and clipping along with self-fusion and devise an 

optimum pathway to the tumour to increase speed of delivery 

of anti-cancer treatments. 

7. Conclusions 

With more controlled texture mapping and programmable 

texture objects it should be possible to investigate the 

trajectories and interactions of capillary vessels as they move 

into the tumour mass. Moreover, developing complex 

mathematical models of fluid dynamics and many-body 

interactions will allow us to investigate the possibility for 

targeted treatment strategies on a fully interactive virtual 

platform. Indeed, by developing complex dynamic models of 

microvascular networks it should be possible to study in more 

detail the blood superhighway within the tumour using 

advanced computational techniques and 3D visual effects 

along the same lines as those presented in this paper. The 

authors are currently developing new and innovative 

algorithms that will realise the goal of having a full interactive 

3D virtual laboratory to aid oncologists, researchers and 

others in the fight against cancer. 
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